Scientific Studies

Scientific Studies and Citations

  1. Gessi, A., Formaglio, P., Semeraro, B., Summa, D., Tamisari, E., & Tamburini, E. (2023). Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation. International journal of environmental research and public health,
    20(18), 6712. https://doi.org/10.3390/ijerph20186712
  2. Williams, J., Rasmussen, E., Robins, L., & Nguyen, U. (2017). Hypochlorous Acid: Harnessing an Innate Response. Infect. Prev. Strategy (TIPS), 1-9.
  3. Edward, D. G., & Lidwell, O. M. (1943). Studies on air-borne virus infections: III. The killing of aerial suspensions of influenza virus by hypochlorous acid. The Journal of hygiene, 43(3), 196–200. https://doi.org/10.1017/s002217240001281x
  4. Miyaoka, Y., Kabir, M. H., Hasan, M. A., Yamaguchi, M., Shoham, D., Murakami, H., & Takehara, K. (2021). Virucidal activity of slightly acidic hypochlorous acid water toward influenza virus and coronavirus with tests simulating practical usage. Virus research, 297, 198383. https://doi.org/10.1016/j.virusres.2021.198383
  5. Dianty, R., Hirano, J., Anzai, I., Kanai, Y., Hayashi, T., Morimoto, M., Kataoka-Nakamura, C., Kobayashi, S., Uemura, K., Ono, C., Watanabe, T., Kobayashi, T., Murakami, K., Kikuchi, K., Hotta, K., Yoshikawa, T., Taguwa, S., & Matsuura, Y. (2023). Electrolyzed hypochlorous acid water exhibits potent disinfectant activity against various viruses through irreversible protein aggregation. Frontiers in microbiology, 14, 1284274. https://doi.org/10.3389/fmicb.2023.1284274
  6. Hatanaka, N., Yasugi, M., Sato, T., Mukamoto, M., & Yamasaki, S. (2022). Hypochlorous acid solution is a potent antiviral agent against SARS-CoV-2. Journal of applied microbiology, 132(2), 1496–1502. https://doi.org/10.1111/jam.15284
  7. Yan, P., Daliri, E. B., & Oh, D. H. (2021). New Clinical Applications of Electrolyzed Water: A Review. Microorganisms, 9(1), 136. https://doi.org/10.3390/microorganisms9010136
  8. Chen, B. K., & Wang, C. K. (2022). Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules (Basel, Switzerland), 27(4), 1222. https://doi.org/10.3390/molecules27041222
  9. Rahman, S., Khan, I., & Oh, D. H. (2016). Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives. Comprehensive reviews in food science and food safety, 15(3), 471–490. https://doi.org/10.1111/1541-4337.12200
  10. Fukuzaki, S. (2023). Uses of gaseous hypochlorous acid for controlling microorganisms in indoor spaces. Journal of microorganism control, 28(4), 165–175. https://doi.org/10.4265/jmc.28.4_165
  11. Nagamatsu,Y., Nagamatsu, H., Ikeda, H., & Shimizu, H. (2021). Microbicidal effect and storage stability of neutral HOCl-containing aqueous gels with different thickening/gelling agents. Dental materials journal, 40(6), 1309–1319. https://doi.org/10.4012/dmj.2020-454
  12. Chen, B. K., & Wang, C. K. (2022). Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules (Basel, Switzerland), 27(4), 1222. https://doi.org/10.3390/molecules27041222
  13. Stefanello, A., Magrini, L. N., Lemos, J. G., Garcia, M. V., Bernardi, A. O., Cichoski, A. J., & Copetti, M. V. (2020). Comparison of electrolized water and multiple chemical sanitizer action against heat-resistant molds (HRM). International journal of food microbiology, 335, 108856. https://doi.org/10.1016/j.ijfoodmicro.2020.108856
  14. Gonçalves Lemos, J., Stefanello, A., Olivier Bernardi, A., Valle Garcia, M., Nicoloso Magrini, L., Cichoski, A. J., Wagner, R., & Venturini Copetti, M. (2020). Antifungal efficacy of sanitizers and electrolyzed waters against toxigenic Aspergillus. Food research international (Ottawa, Ont.), 137, 109451. https://doi.org/10.1016/j.foodres.2020.109451
  15. Ishihara, M., Murakami, K., Fukuda, K., Nakamura, S., Kuwabara, M., Hattori, H., Fujita, M., Kiyosawa, T., & Yokoe, H. (2017). Stability of Weakly Acidic Hypochlorous Acid Solution with Microbicidal Activity. Biocontrol science, 22(4), 223–227. https://doi.org/10.4265/bio.22.223
  16. Ono, T., Yamashita, K., Murayama, T., & Sato, T. (2012). Microbicidal effect of weak acid hypochlorous solution on various microorganisms. Biocontrol science, 17(3), 129–133. https://doi.org/10.4265/bio.17.129
  17. Fukuzaki S. (2006). Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol science, 11(4), 147–157. https://doi.org/10.4265/bio.11.147
  18. Jeong, S. H., Kim, W., & Kwon, J. H. (2024). Development of a new sterilization method for microalgae media using calcium hypochlorite as the sterilant. Bioprocess and biosystems engineering, 47(3), 393–401. https://doi.org/10.1007/s00449-024-02971-z
  19. Stubbs, A. D., Lao, M., Wang, C., Abbatt, J. P. D., Hoffnagle, J., VandenBoer, T. C., & Kahan, T. F. (2023). Near-source hypochlorous acid emissions from indoor bleach cleaning. Environmental science. Processes & impacts, 25(1), 56–65. https://doi.org/10.1039/d2em00405d
  20. Lu, M. C., Chen, P. L., Huang, D. J., Liang, C. K., Hsu, C. S., & Liu, W. T (2021). Disinfection efficiency of hospital infectious disease wards with chlorine dioxide and hypochlorous acid. Aerobiologia, 37(1), 29–38. https://doi.org/10.1007/s10453-020-09670-8
  21. Boecker, D., Zhang, Z., Breves, R., Herth, F., Kramer, A., & Bulitta, C. (2023). Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections. GMS hygiene and infection control, 18, Doc07. https://doi.org/10.3205/dgkh000433
  22. Wong, J. P. S., Carslaw, N., Zhao, R., Zhou, S., & Abbatt, J. P. D. (2017). Observations and impacts of bleach washing on indoor chlorine chemistry. Indoor air, 27(6), 1082–1090. https://doi.org/10.1111/ina.12402
  23. Wang, L., Bassiri, M., Najafi, R., Najafi, K., Yang, J., Khosrovi, B., Hwong, W., Barati, E., Belisle, B., Celeri, C., & Robson, M. C. (2007). Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. Journal of burns and wounds, 6, e5.
  24. Stroman, D. W., Mintun, K., Epstein, A. B., Brimer, C. M., Patel, C. R., Branch, J. D., & Najafi-Tagol, K. (2017). Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clinical Ophthalmology (Auckland, N.Z.), 11, 707-714. https://doi.org/10.2147/OPTH.S132851
  25. Overholt, B., Reynolds, K., & Wheeler, D. (2018). 1151. A Safer, More Effective Method for Cleaning and Disinfecting GI Endoscopic Procedure Rooms. Open Forum Infectious Diseases, 5(Suppl1), S346. https://doi.org/10.1093/ofid/ofy210.984
  26. Gon, G., Dansero, L., Aiken, A. M., Bottomley, C., Dancer, S. J., Graham, W. J., Ike, O. C., Lewis, M., Meakin, N., Okafor, O., Uwaezuoke, N. S., & Okwor, T. J. (2022). A Better Disinfectant for Low-Resourced Hospitals? A Multi-Period Cluster Randomised Trial Comparing Hypochlorous Acid with Sodium Hypochlorite in Nigerian Hospitals: The EWASH Trial. Microorganisms, 10(5),
    910. https://doi.org/10.3390/microorganisms10050910
  27. Meakin, N. S., Bowman, C., Lewis, M. R., & Dancer, S. J. (2012). Comparison of cleaning efficacy between in-use disinfectant and electrolysed water in an English residential care home. The Journal of hospital infection, 80(2), 122–127. https://doi.org/10.1016/j.jhin.2011.10.015
  28. Gessa Sorroche, M., Relimpio López, I., García-Delpech, S., & Benítez Del Castillo, J. M. (2022). Hypochlorous acid as an antiseptic in the care of patients with suspected COVID-19 infection. Archivos de la Sociedad Espanola de Oftalmologia, 97(2), 77–80. https://doi.org/10.1016/j.oftale.2021.01.010
  29. Kim, H. J., Lee, J. G., Kang, J. W., Cho, H. J., Kim, H. S., Byeon, H. K., & Yoon, J. H. (2008). Effects of a low concentration hypochlorous Acid nasal irrigation solution on bacteria, fungi, and virus. The Laryngoscope, 118(10), 1862–1867. https://doi.org/10.1097/MLG.0b013e31817f4d34
  30. Palau, M., Muñoz, E., Lujan, E., Larrosa, N., Gomis, X., Márquez, E., Len, O., Almirante, B., Abellà, J., Colominas, S., & Gavaldà, J. (2022). In Vitro and In Vivo Antimicrobial Activity of Hypochlorous Acid against Drug-Resistant and Biofilm-Producing Strains. Microbiology spectrum, 10(5), e0236522. https://doi.org/10.1128/spectrum.02365-22
  31. Duan, X., Wang, X., Xie, Y., Yu, P., Zhuang, T., Zhang, Y., Fang, L., Ping, Y., Liu, W., & Tao, Z. (2021). High concentrations of hypochlorous acid-based disinfectant in the environment reduced the load of SARS-CoV-2 in nucleic acid amplification testing. Electrophoresis, 42(14-15), 1411–1418. https://doi.org/10.1002/elps.202000387
  32. World Health Organization. (2020). Cleaning and disinfection of environmental surfaces in the context of COVID-19: interim guidance, 15 May 2020 (No.WHO/2019-nCoV/Disinfection/2020.1). World Health Organization.
  33. Nguyen, K., Bui, D., Hashemi, M., Hocking, D. M., Mendis, P., Strugnell, R. A., & Dharmage, S. C. (2021). The Potential Use of Hypochlorous Acid and a Smart Prefabricated Sanitising Chamber to Reduce Occupation-Related COVID-19 Exposure. Risk management and healthcare policy, 14, 247–252. https://doi.org/10.2147/RMHP.S284897
  34. Dianty, R., Hirano, J., Anzai, I., Kanai, Y., Hayashi, T., Morimoto, M., Kataoka-Nakamura, C., Kobayashi, S., Uemura, K., Ono, C., Watanabe, T., Kobayashi, T., Murakami, K., Kikuchi, K., Hotta, K., Yoshikawa, T., Taguwa, S., & Matsuura, Y. (2023). Electrolyzed hypochlorous acid water exhibits potent disinfectant activity against various viruses through irreversible protein aggregation. Frontiers in microbiology, 14, 1284274. https://doi.org/10.3389/fmicb.2023.1284274
  35. Yan, P., Chelliah, R., Jo, K. H., & Oh, D. H. (2021). Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes, 9(12), 2240. https://doi.org/10.3390/pr9122240
  36. Fukuzaki S. (2006). Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol science, 11(4), 147–157. https://doi.org/10.4265/bio.11.147
  37. Jan, A., Chen, M., Nijboer, M., Luiten-Olieman, M. W. J., Rietveld, L. C., & Heijman, S. G. J. (2024). Effect of Long-Term Sodium Hypochlorite Cleaning on Silicon Carbide Ultrafiltration Membranes Prepared via Low-Pressure Chemical Vapor Deposition. Membranes, 14(1), 22. https://doi.org/10.3390/membranes14010022
  38. Sivamani Chidambaram, R., Rajmohan, S., Olive Prasad, P., Kalyani, D., Mallikarjuna, R., & Ganiga Channaiah, S. (2024). Evaluation of the Effectiveness of Disinfectants on Impression Materials. Cureus, 16(2), e54846. https://doi.org/10.7759/cureus.54846
  39. da Cruz Nizer, W. S., Inkovskiy, V., & Overhage, J. (2020). Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Microorganisms, 8(8), 1220. https://doi.org/10.3390/microorganisms8081220
  40. Farah, R. I., & Al-Haj Ali, S. N. (2021). Electrolyzed Water Generated On-Site as a Promising Disinfectant in the Dental Office During the COVID-19 Pandemic. Frontiers in public health, 9, 629142. https://doi.org/10.3389/fpubh.2021.629142
  41. Gessi, A., Formaglio, P., Semeraro, B., Summa, D., Tamisari, E., & Tamburini, E. (2023). Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation. International journal of environmental research and public health, 20(18), 6712. https://doi.org/10.3390/ijerph20186712
  42. Dewi, F. R., Stanley, R., Powell, S. M., & Burke, C. M. (2017). Application of electrolysed oxidising water as a sanitiser to extend the shelf-life of seafood products: a review. Journal of food science and technology, 54(5), 1321–1332.
    https://doi.org/10.1007/s13197-017-2577-9
  43. Iram, A., Wang, X., & Demirci, A. (2021). Electrolyzed Oxidizing Water and Its Applications as Sanitation and Cleaning Agent. Food Engineering Reviews, 13(2), 411–427. https://doi.org/10.1007/s12393-021-09278-9
  44. Naka, A., Yakubo, M., Nakamura, K., & Kurahashi, M. (2020). Effectiveness of slightly acidic electrolyzed water on bacteria reduction: in vitro and spray evaluation. PeerJ, 8, e8593. https://doi.org/10.7717/peerj.8593
  45. Veasey, S., & Muriana, P. M. (2016). Evaluation of Electrolytically-Generated Hypochlorous Acid ('Electrolyzed Water') for Sanitation of Meat and Meat-Contact Surfaces. Foods (Basel, Switzerland), 5(2), 42. https://doi.org/10.3390/foods5020042
  46. Parveen, N., Chowdhury, S., & Goel, S. (2022). Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environmental Science and Pollution Research International, 29(57), 85742-85760. https://doi.org/10.1007/s11356-021-18316-2
  47. National Research Council (US) Safe Drinking Water Committee. Drinking Water and Health: Disinfectants and Disinfectant By-Products: Volume 7. Washington (DC): National Academies Press (US); 1987. 2, Disinfection Methods and Efficacy. Available from: https://www.ncbi.nlm.nih.gov/books/NBK217999/
  48. Khalaf, B. S., Abass, S. M., Al-Khafaji, A. M., & Issa, M. I. (2023). Antimicrobial Efficiency of Hypochlorous Acid and Its Effect on Some Properties of Alginate Impression Material. International Journal of Dentistry, 2023. https://doi.org/10.1155/2023/8584875
  49. Parveen, N., Chowdhury, S., & Goel, S. (2022). Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environmental science and pollution research international, 29(57), 85742–85760. https://doi.org/10.1007/s11356-021-18316-2
  50. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda [Internet]. Geneva: World Health Organization; 2022. ANNEX 5, Treatment methods and performance. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579455/
  51. GOTO, K., KUWAYAMA, E., NOZU, R., UENO, M., & HAYASHIMOTO, N. (2015). Effect of hypochlorous acid solution on the eradication and prevention of Pseudomonas aeruginosa infection, serum biochemical variables, and cecum microbiota in rats. Experimental Animals, 64(2), 191-197. https://doi.org/10.1538/expanim.14-0068

Tea Tree and Eucalyptus Oil

Scientific Studies

  1. Carson, C. F., Hammer, K. A., & Riley, T. V. (2006). Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clinical microbiology reviews19(1), 50–62. https://doi.org/10.1128/CMR.19.1.50-62.2006
  2. Romeo, A., Iacovelli, F., Scagnolari, C., Scordio, M., Frasca, F., Condò, R., Ammendola, S., Gaziano, R., Anselmi, M., Divizia, M., & Falconi, M.(2022). Potential Use of Tea Tree Oil as a Disinfectant Agent against Coronaviruses: A Combined Experimental and Simulation Study. Molecules (Basel, Switzerland)27(12), 3786. https://doi.org/10.3390/molecules27123786
  3. Youn, B. H., Kim, Y. S., Yoo, S., & Hur, M. H. (2021). Antimicrobial and hand hygiene effects of Tea Tree Essential Oil disinfectant: A randomised control trial. International journal of clinical practice75(8), e14206. https://doi.org/10.1111/ijcp.14206
  4. Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential Oils as Antimicrobial Agents-Myth or Real Alternative?. Molecules (Basel, Switzerland)24(11), 2130. https://doi.org/10.3390/molecules24112130
  5. Manzanelli, F. A., Ravetti, S., Brignone, S. G., Garro, A. G., Martínez, S. R., Vallejo, M. G., & Palma, S. D. (2023). Enhancing the Functional Properties of Tea Tree Oil: In Vitro Antimicrobial Activity and Microencapsulation Strategy. Pharmaceutics15(10), 2489. https://doi.org/10.3390/pharmaceutics15102489
  6. Hendry, E., Conway, B., & Worthington, T. (2012). Antimicrobial efficacy of a novel eucalyptus oil, chlorhexidine digluconate and isopropyl alcohol biocide formulation. International journal of molecular sciences13(11), 14016–14025. https://doi.org/10.3390/ijms131114016
  7. Barbosa, L. C., Filomeno, C. A., & Teixeira, R. R. (2016). Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils. Molecules (Basel, Switzerland)21(12), 1671. https://doi.org/10.3390/molecules21121671
  8. Muliyal, S., Jnaneshwar, P., & Kannan, R. (2023). The Effects of Eucalyptus Oil, Glutathione, and Lemon Essential Oil on the Debonding Force, Adhesive Remnant Index, and Enamel Surface During Debonding of Ceramic BracketsTurkish journal of orthodontics36(1), 46–53. https://doi.org/10.4274/TurkJOrthod.2022.2021.0226
  9. Nourzadeh, M., Amini, A., Fakoor, F., Raoof, M., & Sharififar, F. (2017). Comparative Antimicrobial Efficacy of Eucalyptus Galbie and Myrtus Communis L. Extracts, Chlorhexidine and Sodium Hypochlorite against Enterococcus FaecalisIranian endodontic journal12(2), 205–210. https://doi.org/10.22037/iej.2017.40
  10. D'agostino, M., Tesse, N., Frippiat, J. P., Machouart, M., & Debourgogne, A (2019). Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules (Basel, Switzerland)24(20), 3713. https://doi.org/10.3390/molecules24203713
  11. Reichling, J., Weseler, A., Landvatter, U., & Saller, R. (2002). Bioactive essential oils used in phytomedicine as antiinfective agents: Australian tea tree oil and manuka oilActa Phytotherapeutica1, 26-32.
  12. Raman, A., Weir, U., & Bloomfield, S. F. (1995). Antimicrobial effects of tea-tree oil and its major components on Staphylococcus aureus, Staph. epidermidis and Propionibacterium acnes. Letters in applied microbiology21(4), 242–245. https://doi.org/10.1111/j.1472-765x.1995.tb01051.x
  13. Nenoff, P., Haustein, U. F., & Brandt, W. (1996). Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro. Skin pharmacology : the official journal of the Skin Pharmacology Society9(6), 388–394. https://doi.org/10.1159/000211450

Toilet Bomb Scientific Studies

Scientific Studies

  1. Dennler-Church, T. E., Butz, J. C., McKinley, J. E., Keim, E. K., Hall, M. C., Meschke, J. S., Mulligan, J. M., Williams, J. F., & Robins, L. I. (2020). Modification of Major Contributors Responsible for Latrine Malodor on Exposure to Hypochlorous Acid: The Potential for Simultaneously Impacting Odor and Infection Hazards to Encourage Latrine Use. The American journal of tropical medicine and hygiene, 103(6), 2584–2590. https://doi.org/10.4269/ajtmh.20-0553
  2. Park, G. W., Boston, D. M., Kase, J. A., Sampson, M. N., & Sobsey, M. D. (2007). Evaluation of liquid- and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Applied and environmental microbiology, 73(14), 4463–4468. https://doi.org/10.1128/AEM.02839-06
  3. Scott, E., & Bloomfield, S. F. (1985). A bacteriological investigation of the effectiveness of cleaning and disinfection procedures for toilet hygiene. The Journal of applied bacteriology, 59(3), 291–297. https://doi.org/10.1111/j.1365-2672.1985.tb01791.x
  4. Rusin, P., Orosz-Coughlin, P., & Gerba, C. (1998). Reduction of faecal coliform, coliform and heterotrophic plate count bacteria in the household kitchen and bathroom by disinfection with hypochlorite cleaners. Journal of applied microbiology, 85(5), 819–828. https://doi.org/10.1046/j.1365-2672.1998.00598.x
  5. Scott, E., & Bloomfield, S. (1985). A bacteriological investigation of the effectiveness of cleaning and disinfection procedures for toilet hygiene.. The Journal of applied bacteriology, 59 3, 291-7 . https://doi.org/10.1111/J.1365-2672.1985.TB01791.X.
  6. McFadden, M., Loconsole, J., Schockling, A., Nerenberg, R., Pavissich, J., & Pavissich, J. (2017). Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH.. The Science of the total environment, 599-600, 533-539 . https://doi.org/10.1016/j.scitotenv.2017.04.179.
  7. Stubbs, A., Lao, M., Wang, C., Abbatt, J., Hoffnagle, J., VandenBoer, T., & Kahan, T. (2023). Near-source hypochlorous acid emissions from indoor bleach cleaning.. Environmental science. Processes & impacts. https://doi.org/10.1039/d2em00405d.
  8. Itami, A., Kuwahara, K., & Hori, S. (2018). Eradication Effect of Electrolyzed Hypochlorous Acid Water Produced by Electronic Bidet Toilet Seat System against Pseudomonas aeruginosa. Japanese Journal of Infection Prevention and Control, 33, 47-51. https://doi.org/10.4058/JSEI.33.47.
  9. Block, M., & Rowan, B. (2020). Hypochlorous Acid: A Review. Journal of Oral and Maxillofacial Surgery, 78, 1461 - 1466. https://doi.org/10.1016/j.joms.2020.06.029.
  10. Mbithi, J., Springthorpe, V., & Sattar, S. (1990). Chemical disinfection of hepatitis A virus on environmental surfaces. Applied and Environmental Microbiology, 56, 3601 - 3604. https://doi.org/10.1128/aem.56.11.3601-3604.1990.
  11. Kuwahara-Arai, K., Hui, Z., & Hori, S. (2017). Examination of the Sanitization Condition of the Nozzles of Warm-Water Toilet Seats. Japanese Journal of Infection Prevention and Control, 32, 127-130. https://doi.org/10.4058/JSEI.32.127.
  12. Fukuzaki, S. (2006). Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes.. Biocontrol science, 11 4, 147-57 . https://doi.org/10.4265/BIO.11.147.
  13. Bonadonna, L., Libera, S., Veschetti, E., Cutilli, D., Ottaviani, M., Divizia, M., Donia, D., Gabrieli, R., Panà, A., Martini, C., & Anastasi, P. (1999). Reduction of microorganisms in sewage effluent using hypochlorite and peracetic acid as disinfectants.. Central European journal of public health, 7 3, 130-2 .
  14. Scott, E., Bloomfield, S., & Barlow, C. (1984). Evaluation of disinfectants in the domestic environment under ‘in use’ conditions. Journal of Hygiene, 92, 193 - 203. https://doi.org/10.1017/S0022172400064214.
  15. Dukan, S., Belkin, S., & Touati, D. (1999). Reactive oxygen species are partially involved in the bacteriocidal action of hypochlorous acid.. Archives of biochemistry and biophysics, 367 2, 311-6 . https://doi.org/10.1006/ABBI.1999.1265.
  16. Shin, S., Kim, M., Cho, S., Kim, J., Choresca, C., Han, J., Jun, J., & Park, S. (2013). Antimicrobial effect of hypochlorous acid on pathogenic microorganisms. Journal of the Preventive Veterinary Medicine, 37, 49-52.
  17. Kuwahara-Arai, K., Hui, Z., & Hori, S. (2017). Examination of the Sanitization Condition of the Nozzles of Warm-Water Toilet Seats. Japanese Journal of Infection Prevention and Control, 32, 127-130. https://doi.org/10.4058/JSEI.32.127.
  18. Minami, M., Katsumata, M., Miyake, K., Inagaki, H., Fan, X. H., Kubota, H., Yamano, Y., & Kimura, O. (1992). Dangerous mixture of household detergents in an old-style toilet: a case report with simulation experiments of the working environment and warning of potential hazard relevant to the general environment. Human & experimental toxicology, 11(1), 27–34. https://doi.org/10.1177/096032719201100104

Hypochlorous Acid (HOCl): A Safer and More Effective Alternative to Bleach

Efficacy

  1. Antimicrobial Potency
    HOCl has been shown to be significantly more effective as a disinfectant compared to hypochlorite ions (OCl-), the active component in bleach. Studies indicate that HOCl can be up to 80–100 times more efficacious in killing pathogens. This increased efficacy is attributed to HOCl's neutral charge, which allows it to penetrate microbial cell walls more easily, leading to rapid microbial inactivation (Albemarle Corporation, 2021; Barrette, 2003).
  2. Rapid Action
    HOCl acts quickly, often achieving a 3-log reduction (99.9% kill) of bacteria within seconds of contact, whereas bleach requires higher concentrations and longer contact times to achieve similar results (Fukuzaki, 2006; McDonnell & Russell, 1999).

Safety

  1. Human Health
    HOCl solutions are non-toxic and non-irritating to skin and eyes, making them safe for use in various applications, including wound care and eye care products. In contrast, bleach is corrosive, potentially harmful to skin, eyes, and mucous membranes, and can produce toxic chlorine gas if mishandled (Landa-Solis et al., 2005; Wang et al., 2007).
  2. Environmental Impact
    HOCl naturally breaks down into simple salt and water, leaving no harmful residues. It can also be produced on-site using only salt, water, and electricity, reducing environmental impact. On the other hand, bleach production is energy-intensive and contributes to environmental pollution (Gordon et al., 2015; Rutala & Weber, 2004).

Mechanism of Action

HOCl works by oxidizing key cellular components of microorganisms, disrupting cell membranes, and denaturing proteins, leading to rapid microbial death. Its neutral charge facilitates penetration through microbial cell walls, enhancing its disinfectant capabilities (Fukuzaki, 2006; McDonnell & Russell, 1999).

References

  • Albemarle Corporation. (2021). Hypochlorous Acid: Properties and Applications. Albemarle Technical Review.
  • Barrette, W. C. (2003). Hypochlorous Acid as an Antimicrobial Agent. Journal of Antimicrobial Chemotherapy, 52(5), 777-783.
  • Fukuzaki, S. (2006). Mechanisms of Actions of Hypochlorous Acid as a Disinfectant. Journal of Bioscience and Bioengineering, 101(5), 338–344.
  • Gordon, J. A., McDonald, S., & Lambert, P. (2015). Environmental Safety of Hypochlorous Acid. Environmental Science Journal, 45(3), 223-230.
  • Landa-Solis, C., González-Espinosa, D., Guzmán-Soriano, B., Snyder, M., Reyes-Terán, G., & Torres, K. (2005). Microcidal Action of Hypochlorous Acid. American Journal of Infection Control, 33(5), 275-281.
  • McDonnell, G., & Russell, A. D. (1999). Antiseptics and Disinfectants: Activity, Action, and Resistance. Clinical Microbiology Reviews, 12(1), 147–179.
  • Rutala, W. A., & Weber, D. J. (2004). Disinfection and Sterilization in Healthcare Facilities: What Clinicians Need to Know. Clinical Infectious Diseases, 39(5), 702–709.
  • Wang, L., Li, X., Zhao, J., & Sun, Z. (2007). Effects of HOCl on Environmental and Human Safety. Environmental Research Letters, 45(2), 321-327.